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Abstract 

The energy and angular m o m e n t u m  carried by gravitational waves o f  an N-body  system 
has been extensively studied by the  author.  In this paper the linear m o m e n t u m ,  within 
general relativity, is investigated by s tudying waves emit ted from a source consisting of  
N-particles moving under  their own gravitation. 

1. Introduction 

We assume that the gravitational field is weak everywhere. 
The masses are considered as point-like, so that the mass density # is defined 

by 

m 
#(x, t) = ~ m~8(x - xv(t)) (1.1) 

P = I  

To avoid the singularities 6 is a good-delta function having the properties 
(Infeld & Plebfinski, 1960) 

[f(x)~(x - x') dx -- f(x') (1 g2~ 
V 

f f (x)  8(x - x ' ) d x  = O, fo rp  = 1, 2, 3, (1.3) 
Ix-x'lP " ' "  

V 

where f (x)  is regular at x = x'. Also, x = the field point, x '  = the source points 
and my the masses of  the particles (x = (x l, x 2, x3)). 

The N-body system is assumed to be bounded and isolated in the sense that 
it may radiate but no radiation enters it. 
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2. The Flux o f  Momentum 

We consider the distribution of matter of N-bodies described by a symmetric 
complex energy-momentum tensor (Landau & Lifshitz, 1971) 

0 ik = - g ( T  ik + til¢) (2.1) 

where g is the determinant of the metric tensor coefficients gik, Tik the energy- 
momentum tensor and t itc the pseudo tensor. (Latin indices take the values 
0, 1, 2, 3. Greek indices take the values 1, 2, 3, and x ° = ct, where c and t 
denote the speed of light and the time.) 

Equation (2.1) in the Newtonian approximation becomes 

®ioX = - g ( T  ik + tilC)o (2.2) 

where the index 0 means Newtonian approximation. 
The dominant terms of equations (2.2) are (Dionysiou, 1973) 

080 = c2 E m'6(x  - x') (2.3) 

® ~  = c E m 'u '~6 (x -  x') (2.4) 
?-g/~ 

and 

where 

O ~  = E rn'u'~u'~g(x -- x') + t ~ (2.5) 
m 

O ~  = f O ~  dx' (2.6) 

0 ' ~  = E muau¢ + t '~  
~n 

and 

~_  N" ~ ' m ' m " ( x ~  - x ~ ( x ~ - -  X'~) ( _ x") to~ 
I x  - x 13 

- - 2  ~ r  t 

rn  m 

where G denotes Newton's constant. 
From equation (2.7), we have defined (Dionysiou, 1973) 

t 'a~ = f t~(x,  t ) dx  

and it follows 

t , ~ a = _ ½ G E E  m ' m " ( x ~ -  x'~)(x'~- x'~) 
Ix" - x'] 3 

m' m" 

(2.7) 

(rood. div.) (2.8) 

(2.9) 

(rood. div.) (2.10) 
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The field equations are 

32 1 m 16rrG t ik) (2.11) 
3xl3x m [(_g)(g&gtrn _ g/gk )1 = _77_  (_g)(Tik + 

Since the left-hand side is antisymmetric in (/, m) and (k, l), it follows that 

®i~,k = O/e,i = 0 (2.12) 

where,  k means 3/3x x. 
Using equation (2.2) and the definition 

~/(_g)gik = nik + yia (2.13) 

where n ix is the Galflean metric, we get that 

161rG 
[] ~/ik = O/o k (2.14) 

c 4 

where 
1 3 2 ~ = 7 - 2 _ _ _ _ _  

c 2 ~t 2 

From equations (2.12) and (2.14) we have 

7ix, to = "yix, i = 0 (2.15) 

i.e. the de Donder harmonic coordinate condition. 
The general solution of equation (2.14) consists of a mixture of  advanced 

and retarded potentials plus any solution of  the free field equations 

• y i k  = 0 (2.16) 

but on physical grounds we are interested in the retarded potentials, which 
satisfy the outgoing radiation condition, i.e. the sources must be sources, not 
sinks, of  momentum so that [ xx] 

4a f x', t -  c 

7ik(X, t) = -fi- IX -- X'[ dx' (2.17) 

where the integration has to be effected over the whole of  the three-dimensional 
space, since O ik, unlike T ik, need not necessarily vanish outside the volume 
occupied by the system of  N-bodies. From equation (2.12), we take 

~Ok, k = OiOk, i = 0 (2.18) 

which are the conservation laws of the system. 
The first terms of  an expansion of  the integrand of  equation (2.17) in powers 

of n" x'  give 

7/k(x, t) = c4r4-G-G f ®iok x', t - dx + n~c-a ~ ®iokx'~ dx' (2.17a) 
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where Ix - x'] = r - n" x' + O(r-1), r = Ixl and n = x/r. 
Then from equation (2.17a) and using Bekenstein (1973) putting ~ k ,  where 

T ik, we obtain a similar result for the linear momentum in lowest order as a 
quadrupole-octopole cooperative effect by the equation 

p a  = G [22Q~VB & a -  12Q~VB t~°zr- 12Qt~B ~v]  (2.19) 
945e 6 

where Pa  is the total outflux per unit time of the ath component of linear 
momentum of N-bodies system, 

Qo~ = _ ~  6)8°c-Z(3x'C~x'¢- ~jx ' l  2) dx' (2.20) 

B ~  u = 1 (}La~V _ 2NC~V) (2.21) 
C 

~4 
f OS°c-2(5x'=x '~ - ~6~lx'12)x * dx' (2.22) 

aa / .  
N o~' = - ~  J c-l(K°"ex '~ + K°~x  'e - -}G~K°~'Sx '~) dx' (2.23) 

and we have introduced the auxiliary angular momentum tensor 

K ilk = Oiix ' k -  Oikx '] (2.24) 

The three tensors QO~, La~V N ~ v  and B °~u are all symmetric and traceless in 
their first two indices. 

We define 

Io~ = ~ mx°ex ~ 
m 

as the moment of inertia tensor. Also, 

I,~e= Iee~ 

From equation (2.25), we have 

l d  
2 dt 14 = X mu'~xe = E mx~ue 

m m 

We define 

(2.25) 

(2.26) 

(2.27) 

Da~ = ~ mxax ~ - 16o~ ~ mxVxV 
m m 

as the quadrupole tensor of the system of particles. Also, 

(2.28) 

D ~  = Dt~ ~ (2.29) 
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From equations (2.3), (2.20) and (2.29), we obtain 

Q ~ = ~ t  a C 2 ~ m ' 6 ( x - - x ' ) e - 2 ( 3 x ' a x  '~ --  t~a~3lx'[2) d x  ' 
m 

= 3 dt  3 m 
Also, using equations (2.3), (2.4), (2.21), (2.22), (2.23) and (2.24), we obtain 

B ~ v  = 7 / ~ - ~ j l  ( 1  3 4 ~m'(Sx'ax'e-~a6°ca[x'12)x'VdX'm' 

2 a 3  f c a P  [(O°~x'~x'~- °°~x'~x'~) + (°°Vx"~x'~ 

- oO'~x'Vx '~) - -~8,~®Ovx'ax 'a - ®°ax'Vx'a)] dx'} (2.31) 
! 

Integrating equation (2.31), we obtain 
1 ' 0 4  0 3 [ (  

and using equation (2.27), equation (2.32) becomes 

B~U 1 0 4 
= 7 at --~ W~xV) (2.33) 

Putting equations (2.30) and (2.33) into equation (2.19) we get that 

G [ ... 0 4 . . 0 4 
~'~ = --315d [ 22De~ 7t 4 (De~x~) - 12~e~ ~ (D~x~) 

-1 

- 12D~"" -~fi04 (D~xq')/ (2.34) 

which is the linear momentum radiated by the N-bodies moving under their 
own gravitation. 

Now, we suppose the z-axis as the axis of symmetry of N-bodies system and 
0 the polar angle measured from it. Then, we get that 

D12 = Dla = D23 = 0 (2.35) 

from equation (2.29) and 

~12  = 9 1 3  = Z)23 = 0 (2.36) 
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We note that Da~ is a function of time only. From the traceless of D~, 

D ~  = 0 (2.37) 

and D ~  = Dt~, it follows 

~ n  = J~22 = -½9aa (2.38) 

Taking these results into account in equation (2.34), one finds (we put x = x 1 , 
y =x2,z =x 3) 

p3= G 04 
35c---- 7- 933 ~-~ (Daax 3) (2.39) 

where pl and p2 must vanish by symmetry. 
Using Bekenstein (1973), we take 

1 a 3 
911  = 9 2 2  = - - 1 9 3 3  - ~" 0 t  3 q2  (2.40) 

and since, from equation (2.22), 

0 4 
3L 333 - 4L  311 = 10 _--7 q a  

i~t'* 

or  

(2.41) 

04 04 
15 ~ (Daax 3) = 10~-~ q3 (2.42) 

it follows 

qa = }D3a xa (2.43) 

Putting equations (2.40) and (2.43) into (2.39), we obtain 

4G ~3q2 ~4q3 
p3 = (2.44) 315c 7 at 3 0t 4 

where 

an = f OBOc-ZPn(COS 0)Ix'I n dx' ,  n = 2, 3 (2.45) 

and Pn(cOs 0) is the nth Legendre polynomial (Bekenstein, 1973). 
Equation (2.39) is a result on axially symmetric transport of momentum 

by gravitational waves. Bonnor & Rotenberg (1961) have obtained a similar 
result for a special model of two particles. 

Thus according to equations (2.34) and (2.39) the gravitational waves 
remove momentum from the N-bodies particle sources. 
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Appendix 

I. The energy-momentum tensor of  the matter  is 

n dx i dx k 
Tik = E mvc " • 5(x - xu) 

~--1 v/ ( -g)  ds d t  

from which follow (Dionysiou, 1973) 

n 

TOO = Z muc26( x - x~) + O(1) 
~,=1 

n 

T°~  = E m v c u , ~ ( x  - x~) + O(c -1) 
/,'=1 

and 

(A.1) 

(A.2) 

(A.3) 

n 

T ~e = ~ mvuau~6(x - xv) + O(e -2) (A.4) 
l)=l 

is 

and 

where 

II. The pseudo-energy-momentum tensor (Chandrasekhar & Esposito, 1970) 

4 

to o 7 ( O V ]  2 
. . . .  + o ( c  -2) (A.5) 

8~G \ Ox~, ] 

t °~ = 0 + O(c -1) (A.6) 

1 
tc~ = 

167rG 4 ~xc~ ~x¢ \~x~,] J + O(c-2) (A.7) 

OV 8V 

~xa ~xt3 
2(5 {3V12 ~2V* 

a ~ x 7  ] =-8~rGla ~xcflx~ 8rtGpV6a~ 

= -8~rGl~ \~x~x~ VS~ 

- - ,- ,2. ~ '  m'(x,~ - x'~)(x~ - x'~) 
- - 8 , , ~  s,/_, Ix C x'l---~ 

m 

(rood. div.) 
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and 
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V* = - G  E m ' f x  - x'l 
m' 

= ~ m ' ~ ( x  - x ' )  = E m " ~ ( x  - x") 
/ q t  H n 

therefore from equation (A.7) follows 

t ~ =  - ½ G ~ , ,  m'm"(x~_x~)(xa ' x") Ix-xT-x~)8(x- (mod. div.) (A.8) 

iii. We have put  (Chandrasekhar & Esposito, 1970) 

f (x ,  0 --=- g(x, t) (rood. div.) (A.9) 

Jf  the functions f,  g differ by the divergence of  a vector, which vanishes suffici- 
ently rapidly at infinity that their integrals over the whole of  space (assuming 
that  they exist) are equal. 

References 

Bekenstein, J. (t 973). Astrophysical Journal, 183, 657. 
Bonnor, W. and Rotenberg, M. (1961). Proceedings of the RoyalSociety, A, 265, 109. 
Chandrasekhar, S. and Esposito, F. (1970). Astrophysical Journal, 160, 153. 
Dionysiou, D. (1973). Ph.D. Thesis, University of London. Available from University 

Microfilms, Inc. 
Infeld, L. and Pleb~nski, J. (1960). Motion and Relativity, p, 12. Polska Akad. Nauk 

Mongrafie, Fizyczue, Warsaw. 
Landau, L. and Lifshitz, E. (1971). The Classical Theory of Fields, p. 326. Pergamon Press, 

London. 


